

Markscheme

May 2015

Biology

Standard level

Paper 3

17 pages

This markscheme is **confidential** and is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Subject Details: Biology SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer questions from **TWO** of the Options $[2 \times 18 \text{ marks}]$. Maximum total = [36 marks].

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

Option A — Human nutrition and health (a) farming [1] (b) a. total contribution of transport for energy use is more than for GHG; b. transport accounts for about 40 % of energy use and about 10 % of GHG emissions; c. transport on land/truck and car about $\frac{1}{3}$ total energy whereas it is about $\frac{1}{10}$ of GHG emissions; d. shipping about $\frac{1}{10}$ total energy whereas it is about $\frac{1}{50}$ of GHG emissions; e. contribution shipping and NZ transport about equal for energy use whereas transport in NZ contributes more to GHG than shipping; [2 max] (C) Energy: 10% ±1 GHG: 2% ±1 [1] Both needed for [1]. (d) a. no data on UK cheese production for comparison; choose New Zealand cheese because: b. contribution of food miles to GHG emissions is very small compared with farming: c. increases choice for consumers; do not choose New Zealand cheese because: d. contribution of food miles to energy use is about 40 % of total; e. transport causes pollution/traffic congestion/GHG emissions; f. discourages local cheese manufacturers; g. quality/taste might be affected by time from manufacture to eating; [3 max] Award [2 max] if only one argument. Allow marks for choosing UK cheese (instead) for the given reasons. 2. (a) (essential) amino acids; (essential) fatty acids / oils / lipids / fats; vitamins: carbohydrates; [1 max] a. iodine is a mineral that is often scarce in local diets/water supplies; (b) b. required for normal thyroid function/synthesise thyroxine; c. prevents goitre/avoid iodine deficiency/avoid absorbing iodine-131/radioactive iodine: d. prevents brain damage; (C)

- a. protein is needed for growth /muscles / cells / maintenance; b. excess protein not stored / converted to fat/carbohydrate;
 - c. kidney stones /liver damage /gout;
 - d. loss of calcium/risk of osteoporosis /weak bones;
 - e. (possible) malnutrition if high protein is linked to low carbohydrate;
 - f. can result in weight loss due to fat/carbohydrate deficiency;
 - g. fish is high in essential oils;
 - h. excess of protein may lead to a deficiency of another nutrient;

https://xtremepape.rs/

1.

[2 max]

- **3.** (a) a. high blood sugar/glucose levels;
 - b. sugar/glucose in urine;
 - c. increased thirst/frequent urination;
 - d. hunger/weight loss/fatigue/blurred vision/slow healing/skin disorders;
 - (b) a. reduce blood glucose levels as target/ body/muscle cells less sensitive to insulin / not enough insulin produced;
 - b. reduce intake of (saturated) fats, to reduce weight;
 - c. reduce the intake of sugar/simple carbohydrates, causes rapid increase in blood glucose concentration;
 - d. eat more high fibre foods, satisfy appetite, but cannot be broken down;
 - e. regular/many small meals, to avoid (rapid) rise in glucose after a big meal;
 - f. eat complex carbohydrates/carbohydrates with a low glycemic index, digested and absorbed more slowly;

To award the mark, answers require dietary recommendations with a reason. Do not accept comments about increased exercise. [3 max]

[2 max]

- 6 -

4.	(a)	7.1–15.1	[1]
	(b)	 a. EPO values in competitive athletes generally higher/numerical values; b. taekwondo (almost) the same as non-competitive athletes; c. greatest difference seen in swimming; d. range of values overlaps; 	[2 max]
	(C)	 hypothesis supported by: a. swimmers (who train for 35 hours per week) have the highest levels; b. non-competitive athletes (who train for less than five hours per week) have the lowest values; 	
		 hypothesis not supported by: c. taekwondo (who train for 20 hours per week) almost the same as non-competitive athletes; d. high SD/large variation in all cases so differences not likely to be significant; e. no data on age range/sex/number of subjects; f. but swimmers are youngest subjects in the study; Responses for both arguments must be present for [3]. 	[3 max]
	(d)	 a. EPO stimulates production of red cells/increased red cell count; b. greater oxygen carrying capacity for the blood resulting in greater (muscle) performance; c. increases blood viscosity; d. resulting in a high risk of stroke/heart attack/sudden death during sleep; e. gives unfair advantage over athletes who do not use it / results in banning/ exclusion from competition / anaerobic respiration leads to lactic acid build up/fatigue in non-users; f. EPO produced naturally by body so difficult to test for abuse; 	[2 max]
5.	(a)	 a. VO₂ is a measure of volume of oxygen used by the body; b. VO₂ max when only carbohydrate is being respired; c. VO₂ less than VO₂ max indicates fat as well as carbohydrate being respired; d. a low VO₂ indicates a high proportion of fat being respired; 	[2 max]
	(b)	 a. ventilation rate at rest is reduced; b. maximum ventilation rate (during exercise) increases; c. diaphragm and intercostal muscle strength increase; d. vital capacity may increase/ VO₂ max may increase; <i>Do not accept answers relating to cardiac output.</i> 	[2 max]

6.	(a)	a. biceps flexes/bends the arm;b. triceps extends/straightens the arm;	[2]
	(b)	 a. creatine phosphate can supply ATP initially/for up to 10 seconds; b. after (10 seconds) mainly from <u>anaerobic</u> respiration/glycolysis; c. cannot prolong intense exercise (beyond two minutes); 	[2 max]
	(c)	 a. ATP binds to myosin heads; b. ATP used to break cross bridges; c. energy released when ATP forms ADP and phosphate; d. myosin head reset; e. actin slides over myosin; 	[2 max]

Option C — Cells and energy

7.	(a)	 a. constant/low increase in February and early March; b. increasing to a peak in late March; c. decrease throughout April; 	[2 max]
	(b)	 a. increased CO₂ leads to greater (rate of) photosynthesis; b. greatest effect on March 30th; c. smallest effect on April 28th; d. effect is not constant / difference varies; 	[2 max]
	(c)	 a. temperature/light intensity may be limiting factors; b. temperature on sample days may have affected (rate of) photosynthesis/higher temperatures may increase (rate of) photosynthesis / vice versa; c. light intensity may have affected (rate of) photosynthesis in earlier days/higher light intensity for longer may increase (rate of) photosynthesis / vice versa; d. water/rainfall must be same for both groups; e. control and test plants must be grown under the same conditions/other named abiotic variable; 	[3 max]
8.	(a)	Award [1] for two correct labels. Structures must be drawn correctly for mark to be awarded. outer membrane – drawn as a continuous line; inner membrane – showing folding to create cristae; cristae – shown as distinct infoldings of inner membrane; matrix; intermembrane space – shown as continuous space between outer and inner membranes; (70S) ribosomes – shown as small dots in proportion with organelle, not too large; (naked) loop of DNA;	[2 max]
	(b)	 a. matrix is site of reactions of Krebs cycle; b. thin intermembrane space to build up high proton concentration/[H⁺]; c. ATP synthase/respiratory complex on inner membrane to produce ATP as protons pass back to matrix; d. folded inner membrane / cristae to increase surface area (for electron 	
		transport chain); e. ribosomes to make enzymes/proteins (required for Krebs cycle);	[3 max]

- **9.** (a) a. substrate(s)/ATP and glucose bind at the active site;
 - b. hexokinase shape/active site changes;
 - c. so that substrate(s)/ATP and glucose now fit the active site;
 - d. ATP and glucose react and products released;
 - e. hexokinase shape restored;
 - f. induced fit model allows for broad specificity/range of substrates;

Award **[2 max]** if no reference to any of the specific enzyme, substrates or products in the question.

- (b) a. metabolic pathway is a series of enzyme catalysed reactions;
 - allosteric enzyme catalyses one step/first step in the mechanism/chain of reactions;
 - c. enzyme is inhibited by the end product;
 - d. end product binds at a site other than the active site/allosteric site;
 - e. reaction mechanism is interrupted / product formation stops;
 - f. more inhibition of enzyme as end product concentration rises / less inhibition as end product reduces;
 - g. example of negative feedback;

[3 max]

Option D — Evolution

(a)	<i>3 months:</i> Hb ^S Hb ^S <i>15 months:</i> Hb ^A Hb ^S (<i>accept Hb^SHb^A</i>) Both needed for [1] .	[1]
(b)	 a. overall decrease over time; b. repeating pattern of periods of constant survival followed by drops; c. constant up to about 3–4 months; d. rapid decrease between 3/4 and 7/9 months; e. remains fairly constant after 9 months / further drop at 24 months; <i>Accept numerical values in place of some statements.</i> 	[2 max]
(C)	 a. both decrease with time; b. survival is similar / equal up to about 3 months; c. (from about 3 months onwards) heterozygote/Hb^AHb^S exceeds homozygote/Hb^AHb^A; d. Hb^AHb^A continues to decrease while Hb^AHb^S levels off; e. after about 15 months difference between survival rates remains about the same; 	[2 max]
(d)	 a. Hb^SHb^S/homozygous for sickle cell may confer a protective effect up to about 3–4 months; b. similar survival for Hb^AHb^S and Hb^AHb^A/heterozygous and homozygous normal up to about 6 months suggests no clear protective effect; c. after about 6 months the greater survival for Hb^AHb^S indicates some protective effect; (<i>Do not allow this marking point without a reference to the months.</i>) d. only 1022 Kenyan children so cannot draw firm conclusions/could be other genetic/environmental factors; e. example of balanced polymorphism; 	[2 max]
(a)	 a. ancestral eukaryote cell engulfs free living prokaryote; b. free living prokaryote not digested; c. symbiotic relationship develops between ancestral eukaryote cell and engulfed prokaryote; d. ancestral eukaryote cell and engulfed prokaryote reproduce as a unit; e. the engulfed prokaryote provides energy by aerobic respiration for the eukaryote; f. prokaryote gains protection/nutrition; g. organelles have double membranes; h. organelles have DNA/ribosomes; i. theory cannot be falsified/tested; 	[3 max]
(b)	membrane (isolates from surroundings) / able to use molecules from the environment as an energy source / capable of reproduction/self-replication / internal chemistry different from that of the surroundings / contain polymers	[1]
(c)	 a. early atmosphere was oxygen free; b. some prokaryotes could carry out chemosynthesis/photosynthesis; c. oxygen produced as waste product of photosynthesis; d. few aerobic organisms; e. oxygen began to accumulate in the atmosphere; 	[2 max]
	(a) (b) (c) (d) (b) (c)	 (a) 3 months: Hb^SHb^S 15 months: Hb^SHb^S (accept Hb^SHb^A) Both needed for [1]. (b) a. overall decrease over time; b. repeating pattern of periods of constant survival followed by drops; c. constant up to about 3-4 months; d. rapid decrease between 3/4 and 7/9 months; e. remains fairly constant after 9 months / further drop at 24 months; Accept numerical values in place of some statements. (c) a. both decrease with time; b. survival is similar / equal up to about 3 months; c. (from about 3 months onwards) heterozygote/Hb^AHb^S exceeds homozygote/Hb^AHb^C; d. Hb^AHb^A continues to decrease while Hb^AHb^S levels off; e. after about 15 months difference between survival rates remains about the same; (d) a. Hb^SHb^S/homozygous for sickle cell may confer a protective effect up to about 3-4 months; b. similar survival for Hb^AHb^S and Hb^AHb^A/heterozygous and homozygous normal up to about 6 months suggests no clear protective effect; c. after about 6 months the greater survival for Hb^AHb^S indicates some protective effect; (<i>Do not allow this marking point without a reference to the months.</i>) d. only 1022 Kenyan children so cannot draw firm conclusions/could be other genetic/environmental factors; e. example of balanced polymorphism; (a) a. ancestral eukaryote cell and engulfed prokaryote; b. free living prokaryote provides energy by aerobic respiration for the eukaryote; f. prokaryote gains protection/nutrition; g. organelles have double membranes; h. organelles have double membranes; h. organelles have double membranes; h. dranelles have double membranes; h. theory cannot be falsified/tested; (b) membrane (isolates from surroundings) / able to use molecules from the environment as an energy source / capable of reproduction/self-replication / internal chemistry different from that of the surroundings / contain polymers (c) a. early atmosphere was oxygen free; b. some prokaryotes could carry out chemosynthesis;/photosynthesis; c.

- **12.** (a) a. ancestral species occupies new environment / survives natural disaster;
 - b. different members of the species are exposed to different selection pressures;
 - c. gives rise to new species that share common structures adapted to new environment / occupy all niches;
 - d. example of divergent evolution/homology;
 - e. accept valid example eg Galapagos finches, vertebrate pentadactyl limb; [2 max]
 - (b) a. increased brain size over time during human evolution;
 - b. eating meat increases protein/fat/energy;
 - c. allows growth of a large brain;
 - d. large brain may have led to more successful hunting behaviour and larger quantity of protein in the diet;
 - e. more energy rich food available in more complex societies/as a result of cultural evolution/better agriculture;

– 12 –

Option E — Neurobiology and behaviour

13.	(a)	Paper: (trial) 1 Plastic: (trial) 5 Both required for [1] .	[1]
	(b)	 a. discovery time in paper flowers always shorter than plastic flowers; b. larger variation in data for plastic flowers; c. decreasing discovery time (over the eight trials) for the paper flowers only; d. no trend in discovery time for plastic flowers; e. from trial four discovery time for paper flowers remains fairly constant/slight variation whereas for plastic flowers discovery time increases; 	[2 max]
	(c)	 a. mechanoreceptors are touch receptors; b. discovery time decreases over the eight trials for paper flowers; c. showing evidence of learning; d. plastic flowers discovery times show no evidence of learning; e. paper flowers have a rough surface so mechanoreceptors are more effective / plastic flowers smooth so do not stimulate mechanoreceptors; 	[2 max]
	(d)	 a. improved chances of finding food; b. advantage in dark/conditions when coloured/scented flowers not available; c. not completely dependent on light/chemoreceptors to find food; d. more likely to reproduce and pass gene (for mechanoreceptors) to offspring; advantage over other members of the species through learning; 	[2 max]
14.	(a)	 a. smell or sight of food provides the (unconditioned) stimulus at the start of the experiment; b. salivation at the sight or smell of the food is the (unconditioned) response; c. bell/other stimulus repeatedly applied just before food; d. bell/other stimulus provides a (conditioned) stimulus; e. (conditioned) response is salivation at the bell/other stimulus only; f. experiment was an example of classical conditioning; Award [2 max] if the terms stimulus and response are not used. 	[3 max]
	(b)	 a. sensory neuron carries signal from <u>sense organ/receptors/nose/eye</u> to CNS; b. motor neuron carries signal from CNS to <u>effector/muscle/salivary gland;</u> c. relay neuron carries signal from sensory neuron to motor neuron; 	[2 max]

- 15. (a) nicotine; cocaine; amphetamines; [1 max] ecstasy; Award [1] for any two. Consider the first two only, if there are more. a. increases arousal/alertness; (b) b. feelings of excitement/euphoria; c. aggressive behaviour; d. loss of judgement/self-control; e. social withdrawal/depression/dysfunction; [2 max] f. loss of appetite; (C) a. peer pressure / cultural traditions; b. inherited / genetic predisposition;
 - c. social problems / trauma;
 - d. passed from mother to newborn/when breast feeding;
 - e. many stimulate synapses with dopamine as a transmitter / blocks re-uptake of dopamine;
 - f. pleasurable effects of dopamine/euphoria/regular use may lead to addiction;
 - g. increasingly large/more regular doses needed for effect;

Option F — Microbes and biotechnology

16.	(a)	Manure type: pig Mixing ratio: 3:1 (ratio) Both needed for [1] .	[1]
	(b)	 a. changing the ratio from 1:1 to 2:1 increases biogas yield for all three types of manure; b. 1:1 ratio is least productive for all three types of manure; c. changing the ratio from 1:1 to 2:1 has the biggest effect in poultry manure/least effect in cattle manure; d. changing the ratio from 2:1 to 3:1 increases biogas yield for poultry and pig manure but not cattle manure; e. the only decrease in yield with an increase in ratio occurs in cattle manure when changing the ratio from 2:1 to 3:1; f. the biggest effect of changing the ratio is seen in pig manure / the smallest 	
		effect of changing the ratio is seen in cattle manure;	[3 max]
	(C)	difference in diets/digestive systems/excretory products/intestinal bacteria (between birds and mammals)/water content of manure <i>Accept other suitable suggestions.</i>	[1]
	(d)	 a. suitable manure : water ratio / pig manure is more efficient; b. anaerobic conditions; c. suitable temperature/pH for growth of bacteria; 	[2 max]
17.	(a)	Paramecium	[1]
	(b)	 a. <i>Paramecium</i> directs food to mouth by water current set up by cillia; b. <i>Amoeba</i> uses phagocytosis; c. <i>Euglena</i> species may be autotrophic/use photosynthesis or heterotrophic; d. <i>Paramecium</i> and <i>Amoeba</i> digest food inside food vacuoles; 	[2 max]
	(c)	 a. amylase produced by germinated grain/barley/cereals breaks down starch (in seeds) to sugar; b. yeast ferments sugars/glucose anaerobically; c. CO₂ and ethanol produced; d. CO₂ remains (partially) dissolved in beer/gives beer its bubbles/carbonation; e. ethanol produced in beer (eventually) kills yeast cells/stops fermentation by yeast; f. by-products/different yeast varieties give different beers/flavours; 	[3 max]

18.	(a)	makes cDNA/DNA on an RNA template / copies RNA into DNA	[1]
	(b)	 a. used to make DNA from (mature) mRNA; b. DNA formed without introns/host bacteria have no means to remove introns; c. single stranded DNA made by reverse transcriptase; d. DNA polymerase synthesises a complementary DNA (double strand); e. double stranded DNA spliced into host DNA/gene transfer; f. obtained from retroviruses (such as HIV); g. used for gene therapy / diagnosing microbial diseases/named example; 	[3 max]
	(c)	 a. stimulate autoimmune response/tissue rejection / infection resulting from vector; 	
		 b. cancer/oncogenes / overexpression of gene; Do not accept death as a response. 	[1 max]

Option G — Ecology and conservation

19.	(a)	S.muticum site: Corophiidae sp. control site: S. squamata Both needed for [1] .	[1]
	(b)	 a. fewer different types of organism / smaller diversity at <i>S. muticum</i> site; b. mean abundance at <i>S. muticum</i> site is higher for those organisms present; c. <i>Rissoidea sp.</i> and <i>P. maculata</i> found at control site but not at <i>S. muticum</i> site; d. <i>C. pagurus</i> <u>only</u> found at <i>S. muticum</i> site; <i>Comparisons are required but the control site does not need to be mentioned in each response.</i> 	[3 max]
	(c)	 a. <i>S. muticum</i> provide habitat/shelter/protection from predators for some species; b. <i>S. muticum</i> change the environment to suit some species/example of a change; c. some organisms more successful because less (inter-specific) competition; d. more food may be available (for herbivores); e. some herbivores may rely on native algae that have been displaced; f. (other) conditions at the control site may not be identical to the test site; 	[3 max]
20.	(a)	 a. random positioning of the transect; b. transect is a line stretched over an area of study; c. samples taken/species present recorded at regular intervals along the transect; d. used to investigate effect of an abiotic variable/named example; [2 max] 	
	(b)	 a. rocks begin to break down; b. minerals begin to accumulate; c. soil begins to develop; d. water retention increases; e. erosion of soil is reduced (by rhizoids and roots); 	[2 max]
	(c)	The question asks for an outline but most candidates have given a list of factors without a reason. Therefore award [1] for every two factors listed or [1] for each qualified factor.	
		water (distribution) for turgor/biochemical reactions/photosynthesis; mineral / inorganic content / salinity of soil/water; temperature (max, min, range, seasonal changes) / altitude; light (intensity, duration, wavelength) for photosynthesis; pH (range, average, changes) of soil/water;	
		wind (direction, strength);	[2 max]

21. a. named example of chemical (for example: mercury, DDT, PCBs, TBT, PAHs, (a) heavy metals, selenium); b. long lived / do not biodegrade / stored in body tissues / fat soluble; c. present in small concentration in the environment; d. chemical becomes more concentrated in the bodies of organisms at each successive trophic level; e. reach toxic levels in top consumer/organisms near the end of the food chain / example of top consumer affected; [3 max] Award [2 max] if no named example of chemical. (b) a. includes all aspects of way of life of a species/role of the species in the ecosystem; b. includes relationships within the community; c. feeding relationships; d. interaction with environment/spatial habitat; [2 max]

– 17 –